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Stress relaxation data in bending and at 633 and 673 K, for stress-relieved, cold-worked 
and annealed Zircaloy-4, are reported. The data can be described by a creep model that 
involves jog-drag and cell-formation and the ratio of cell diameter to dislocation spacing, 
obtained from the stress relaxation curves, is shown to be dependent on the thermo- 
mechanical treatment given to the specimens, prior to the stress relaxation tests. Finally, 
the values Hv ~ 87 kJ mo1-1 and Do -~ 3.3 X 10 -is m 2 sec -1, for the activation enthalpy 
and the pre-exponential factor for self-diffusion, respectively, were obtained from the 
stress relaxation curves measured at the two temperatures. 

1. Introduction 
The 673 K creep behaviour of Zircaloy has recently 
become interesting for two reasons. With current 
nuclear fuel pin designs and power levels, the 
cladding inner diameter can achieve operating 
temperatures as high as 673K. Secondly, the 
creep strain of Zircaloy at 240h, 673K, and 
150 MPa is used as a quality control test for creep 
strength in Zircaloy clad. The available data show 
that the creep strength of Zircaloy-4*, for 
example, is strongly dependent on metallurgical 
structure (cold-work and annealing), texture and 
composition [1-4]  but, the fundamental mech- 
anisms controlling the creep of this alloy at 673 K 
are not well established. 

Creep experiments with broad changes in the 
metallurgical structure are costly and time con- 
suming, so that efforts have been made to obtain 
information about the creep behaviour from stress 

*Nominal composition (wt %): Sn(1.43), Fe(0.21), Cr (0.1), 
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relaxation measurements. Huang et al. [5] have 
performed load relaxation tests as a function of 
temperature on Zircaloy-4 tubing with the applied 
stress in the direction of the tube axis. The exper- 
imental data were analysed using the approach of 
a plastic equation of state as proposed by Hart 
[6, 7] and the authors concluded that: (1) in the: 
temperature range 473 to 658 K the results can be 
represented by the phenomenological model based 
on Hart's plastic equation of state; (2) at higher 
temperatures the load relaxation data suggest the 
contribution of grain-boundary sliding; (3) at 
temperatures near 673 K the tensile data suggest 
that the effects of strain ageing are not important. 

Povolo and Higa [8] have reported stress 
relaxation measurements in bending, performed 
in Zircaloy-4 at 673 K up to times of the order of 
1000 h, in stress-relieved and cold-worked 
specimens. The stress relieving treatments were 

Zr (balance) 
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made at three different temperatures: 773, 793 
and 813 K, for 1 and 2 h. Contrary to the load 
relaxation data on tubing reported by Huang et  al. 

at a similar temperature, it was found that the 
individual stress relaxation curves, taken at differ- 
ent initial stresses, could be related by scaling [6]. 
In fact, it was possible to superpose by translation 
any one of the curves on to any of the others in 
such a way that the overlapping segments of each 
curve match within experimental error. All the 
stress-relieved specimens showed the same scaling 
behaviour, but the cold-worked specimens gave a 
translation path of a different slope. The results 
were interpreted in terms of Hart's phenomen- 
ological model of plastic deformation, for high 
homologous temperatures and it was suggested 
that the stress relaxation is mainly controlled by 
grain-boundary sliding. Povolo and Marzocca 
[9, 10], however, have shown that the creep and 
stress relaxation data, taken at 673 K in cold- 
worked Zircaloy-4, may also be described by a 
model based on the diffusion controlled motion 
of jogged screw dislocations, proposed by Barrett 
and Nix [11]. Furthermore, an interrelation 
between the parameters of Hart's phenomen- 
ological equation for high homologous tempera- 
tures and those for the Barrett-Nix equation was 
established [12]. 

Keusseyan et  al. [ 13], performed load relaxation 
tests on Zircaloy-2 and Zircaloy-4 sheets with 
various textures and microstructures, to study the 
influence of fabrication variables on the mech- 
anical behaviour of these alloys. The data obtained 
primarily at temperatures (573 to 673 K) typical 
of cladding operating conditions, were interpreted 
in terms of Hart's phenomenological model for 
plastic deformation. The load relaxation curves 
obtained for the different materials were qualitat- 
ively similar with the exception of those obtained 
for 0 ~ texture material. This material showed the 
lowest yield strength and no evidence for grain- 
boundary sliding at temperatures up to 573K. 
According to the authors, the stress relaxation 
curves at 673 K were influenced by grain-boundary 
sliding. 

More recently, Povolo and Peszkin [14] have 
reported stress relaxation data in bending in 
Zircaloy-4 with different degrees of cold work. 
The measurements were extended up to times of 
the order of 100Oh, with six different initial 
stresses. It was demonstrated that the stress 
relaxation curves, for a given thermomechanical 
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treatment, are related by scaling and the slope of 
the translation path depends on the treatment 
given to the specimens prior to the relaxation 
testing. The data were interpreted in terms of 
Gittus' [15] creep model which involves jog-drag 
and cell-formation. The average spacing between 
neighbouring jogs and the ratio of cell diameter 
to dislocation spacing were obtained from the 
stress relaxation curves. Povolo and Marzocca [16] 
interpreted the creep characteristics, at 673 K, of 
cold-worked and stress relieved Zircaloy-4 with 
the same model. Furthermore, by means of a 
grain-counting technique it was shown that grain- 
boundary sliding gives only a small contribution 
to the creep strain, for the stresses and strain rate 
considered. 

It is the purpose of this paper to present data 
of the stress relaxation in bending, of cold-worked, 
stress-relieved and annealed Zircaloy-4. The 
measurements are performed both at 633 and 
673 K to study the influence of the temperature 
on the parameters of the theoretical model which 
describes the stress relaxation curves. 

2. Experimental procedure 
The specimens were prepared from a Zircaloy-4 
plate which was fabricated according to ASTM B 
352-64T standards. The as-received plate had the 
following dimensions: 6mm thick, 15 mm wide 
and 1 m long, and the original rolling direction was 
along the largest dimension. The texture of this 
plate, as determined by the Schulz technique, is 
indicated by the (0002)  pole figure shown in 
Fig. 1. The chemical composition of the alloy is 
given in Table I. 

Since specimens 1 mm thick were needed for 
the stress relaxation experiments, it was necessary 
to reduce the original plate by cold-rolling. The 
following procedure was used: the as-received 
plate was cut into parts and each part cold-rolled 
20% thickness, along the original rolling direction. 
Then they were annealed at 1073 K, for 1 h in a 
high vacuum, and cold-rolled again to the same 
percentage and in the same direction. The sequence 
was repeated, except for the last rolling, where a 
50% reduction in thickness was used. The 20% 
reduction (except during the last rolling) between 
annealing treatments, was mantained to avoid 
cracking of the material. The samples for the stress 
relaxation experiments were machined from this 
material, with the axis parallel to the rolling 
direction, with dimensions 1ram thick, 10ram 
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Figure 1 (0002) pole figure for the 
as-received Zircaloy-4 plate. 

wide and 100ram long. The texture of  these 
specimens is shown in Fig. 2. 

Different thermal treatments, in vacuum, were 
given to the specimens prior to the stress relax- 
ation experiments. These treatments are named 
A, B, C and D, respectively, as indicated in 
Table II. The pole figures after treatments B and C 
are similar to the pole figure given in Fig. 2, since 
the material has only recovered and stress relieved. 
Annealing treatment D changes the pole figure to 

T A B L E I A Composition of Zircaloy-4 

Constituents (%) 

Sn 1.48 
Fe 0.23 
Cr 0.12 
Fe + Cr 0.35 

T A B L E I B Main impurities (ppm) 

Constituents 

a distribution with a maximum intensity of  basal 
poles located near the normal direction [14]. 

The specimens, originally flat, were bent elasti- 
cally in stainless steel holders with radii which gave 
maximum outer fibre stresses, s  between 100 and 
300 MPa, calculated from the expression 

~, = E h / 2 R  (1) 

where E is Young's modulus (100GPa for 
Zircaloy-4 at room temperature [17]), R is the 
radius of  the holder, and h the thickness of  the 
specimen. The initial outer fibre stresses used are 
indicated in Table III. 

Duplicate holders, similar to those described by 
Fraser et al. [18], were used to perform measure- 
ments at 633 and 673K simultaneously. These 
holders were inserted into the corresponding 
furnace and extracted periodically for curvature 

C 112 
Hf 62 
N 51 
W < 50 
Si 44 
O 980 

T A B L E I I Thermomechanical treatment given to the 
specimens prior to the stress relaxation tests 

Thermomechanical Name 
treatment 

50% cold-rolled A 
A + l h a t 8 1 3 K  B 
A+  2hat  813K C 
A + 3 h a t 1 0 2 3 K  D 
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Figure 2 (0 0 0 2) pole figure for the 50% 
cold-rolled type-A specimens. 

measurements. The temperature was controlled 
with thermocouples attached to the holders near 
the specimens and the fluctuations were of the 
order of +- I K; the accumulated time for relaxation 
was of the order of 1000h. 

The radii of curvature, R i, after releasing the 
specimens from the holders were determined in 
the way described in [8]. Duplicate specimens 
were used in order to observe the dispersion 
between equivalent specimens on the results. The 
measured stress change at the surface of the bent 
specimen, %,  after releasing it from the holder, 
is given by 

% = ( E h / 2 ) ( I / R -  1/Ri) (2) 

where E = 72.6 GPa at 673 K and E = 74.86 GPa 
at 633K [17]. The stress at the surface of the 
beam before unloading, ~r, can be obtained from 
the relationship [19, 20] 

2 + ~ (dob/dZ) (3) 0 = -~O b 

T A B L E I I I Initial stresses at the surface of  the bent  
specimens (MPa) 

21 115.6 
~: 204.4 
~3 306.8 

with E given by Equation 1 and % by Equation 2. 
e is an equivalent uniaxial stress and represents the 
stress that would be obtained at the surface of the 
beam under an initial uniaxial stress given by Z. 

3. Results 
Figs. 3 to 5 show the measured stress change at 
the surface of the specimens, a b (Equation 2), 
as a function of time, both at 633 and 673 K, for 
the specimens with different thermomechanical 
treatments and the three initial stresses. The data 
points represent the average values obtained in 
two similar specimens. In this paper A, B, C, D 
will indicate specimens with the thermomechanical 
treatments given in Table I tested at 633 K, and 
A', B', C', D' specimens with the same thermo- 
mechanical treatments but tested at 673 K. 

The stresses, a, at the surface of the specimens 
before unloading, which correspond to the values 
that would be obtained in the same material, 
under initial uniaxial stresses given by Z, can be 
calculated using Equation 3 and the procedure 
described in [19]. These curves are not given to 
save space. The logo-log~ stress relaxation curves, 
where ~ is the plastic strain rate, are obtained by 
calculating the derivatives of the o against t curves, 
since ~ - - -  b/E, where E is taken at the corre- 

2972 



I00 

I 50 

T=633 K 

?) , , 1 Z l  

• _ T--673 K 

T=633 K 

100 ~ ~ ~ 1 ~ ,  3 

EO~.(c , - - L r ~ ~ L ~  2 ' 

1oo I ~ _  T--'673K 

I id) , l , ~ J 
4 5 6 7 

log t (sec) " 
Figure 3 Measured stress change at the surface as a function 
of time. (a) type-A, (b) type-A', (c) type-C and (d) type-D' 
specimens. 
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Figure 4 Measured stress change at the surface as a function 
of time. (a) type-B and (b) type-B' specimens. 

sponding temperature and the dot indicates a 
derivative with respect to the time. These curves 
are shown in Figs. 6 and 7. Two curves are 
obtained, in some cases, from the data measured 
at the intermediate initial stress. These two differ- 
ent curves result from the fact that Equation 3 
can be applied to the Ob--t curves either with 
d Z = 2 ; 3 - - E 2  or with d Z = I ~ - - Z I  [8]. The 
curve marked 2~2 is obtained in the first case, and 
that marked Z~ in the second case. 

The logo-log~ curves shown in Figs. 6 and 7 
are related by scaling [6]. In fact, for specimens 
with a given thermomechanical treatment and at 
a given temperature, it is possible to superpose by 
translations (Alogo-Alog~) any one of the curves, 
at a given Z, on to any of the others in such a way 
that the overlapping segments of each curve match 
within experimental error. The translation is made 
along the translation path of the slope 

/l = Alogo/Alog~ = constant (4) 

The master curves obtained by translating, for 
each type of specimen and at each temperature,  

all the curves on to the curve for E1 are shown in 
Fig. 8. The corresponding translation paths are 
indicated by the straight lines and the slopes are 
given in Table IV. These slopes were obtained 
using a method to be described later in the paper. 

4. Discussion 
The individual curves of Figs. 6 and 7 and the 
master curves of Fig. 8 can be described analyti- 
cally by the constitutive equation 

s o  = + (5)  

where 
= G~ABK 6 ; (6) 

d* = B(kT)3K6[b3l 3 (7) 

= b : l l k T ;  (8)  

B = cjDvb/G:kT; (9) 

A = b:/2OaDv (10) 

b is Burgers vector, G is the shear modulus, D v is 
the volume self-diffusion coefficient, l is the 
distance between neighbouring jogs on dislo- 
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b~gure 5 Measured stress change at the surface as a func- 
tion of time. (a) type-C and (b) type-C' specimens. 
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Figure 6 Stress against strain rate relaxation curves. 
(a) Broken curves type-A, full curves type-A'; (b) broken 
curves type-D, full curves type-D'. The straight lines 
indicate the translation paths. 

cations, q is the thermal jogs concentration, K is 
the ratio of cell diameter to dislocation spacing, 
k is Boltzmann's constant and T the absolute 
temperature. Equation 5 was given by Gittus [15] 
and takes into account the effects of jog-drag 
and cell-formation upon the rate of creep. This 
equation is plotted in Fig. 9 as log(so) against 
log(~/~*), for different values of/3. Since Figs 8 
(or Figs. 6 and 7) and 9 are plotted in the same 
scales, by superimposing both figures and trans- 
lating along the axes (without rotations) [21] it is 
easily seen that the master curves of Fig. 8 can be 
matched to some curves of Fig. 9. The parameters 
a and ~* can be obtained from the coincidence of 
some value of logo and log~ from the experimental 
curve with the corresponding log(aa) and 
log(~/~*) values from the theoretical ones. /3 is 
read directly. Equation 5 was deduced by Gittus 
under steady-state conditions but Povolo and 
Marzocca [16] have shown that this equation may 
also be valid during transient creep. When the 
master curves of Fig. 8 are superimposed on the 
normalized plot of Equation 5, given in Fig. 9, to 

obtain the parameters a, ~* and/3, it is implicitly 
assumed that /3 is constant for all the individual 
curves of Figs. 6 and 7, corresponding to a given 
thermomechanical treatment. On taking into 
account the scaling conditions for Equation 5 [22, 
23] it can be shown that/~ = 1/2 if/3 is the same 
for all the individual curves, for a given treatment 
and at a given temperature. As shown in Table IV, 
however, the experimental values for the slopes of 
the translation paths are different from 1/2, which 
means either that the data cannot be described by 
Equation 5 or that 13 is variable. In fact, as shown 
by Povolo et aL [14, 23] when sinh-~[/3(~/~*) u3] >> 
(~/~,)1/3 and sinh (o~o) ~-- �89 exp(ao),  Equation 5 
reduces to 

(~J~*) = (118/33) exp(3ao).  (11) 

Equation 11, which is a limiting form of Equation 
5, can lead to a scaling behaviour with variable/3 in 
a log-log diagram and the scaling conditions are 

Aloga = -- #Alog~ (12) 

2 9 7 4  
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Figure 7 Stress against strain rate relaxation curves. 
(a) Broken curves type-B, full carves type-B'; (b) broken 
curves type-C, full curves type-C'. The straight lines 
indicate the translation paths, 

Alog~* = (3#-- ,})Alog~ (13) 

Alog/3 = (g -- {)Alog~ (14) 

These equations lead to Alogj3 = 0 for/1 = �89 
It is difficult to obtain the parameters of  the 

individual curves shown in Figs. 6 and 7, by super- 
imposing them to the normalized plot of  Equation 
5 since they are too short and the parameters 
cannot be unambiguously determined. A similar 
situation is found for the master curves of  Fig. 8 
since the experimental range is extended only 

T A B L E I V Slopes of the translation paths shown in 
Fig. 8 

Specimen type 

A -0.96 
A' 1.00 
B 0.23 
B' 0.45 
C 0.14 
C' 0.43 
D 0.10 
D' 0.23 

slightly. If  Equation 5 reduces to Equation 11, 
then a plot of  the data of  Figs. 6 and 7 as in 
against g, at different initial stresses, gives straight 
lines of  slope 30~ and intercept ~*/8~3 a. Further- 
more, on combining Equations 12 to 14 it is easy 
to show that 

*//33 = q ( ~ ) - "  (15) 

where Ca is a constant for a given thermomech- 
anical treatment and at a given temperature. The 
data of  Figs. 6 and 7 give straight lines when 
plotted as In ~ against o. In addition, as suggested 
by Equation 15, a plot of  log(~*//33) against loga 
should give a straight line of  slope -- 1//~. This last 
plot allows a determination of the slope of the 
translation path very accurately. The values given 
in Table IV were determined in this way. 

From Equations 6 to 10 it is easy to show that 

t3 = G2b~a2~*12ODv (16) 

so that once a and ~*//33 are known, ~* and/3 can 
be calculated using Equation 16. The problem is 
that Equation 16 involves D~ and there is some 
disagreement in the literature about the self- 
diffusion coefficient for zirconium [24], which 
can give differences of  various orders of  magnitude 
between the self-diffusion coefficients extra- 
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Figure 8 Master curves obtained by trans- 
lating the individual curves of Figs. 6 and 7 
on to the curves for 2;x, along the trans- 
lation paths indicated in the same figures. 
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polated to temperatures of the order of 673 K. 
In this situation the following procedure was 
preferred: a is determined, for each of the master 
curves of Fig. 8, from the linear plots of In 
against o~, as suggested by Equation 11. Once a is 
known, for each type of specimen, the procedure 
of superimposing Fig. 8 on Fig. 9 can be done only 
by a translation parallel to the log(~/~*) axis, 
reducing the error in the determination of ~* 
and/L Equation 16 can now be used to calculate 
Dr, with G =  26GPa at 673K, G = 27GPa at 
633K [17] and b = 3.23 x 10-1~ leading to the 
average values for the self-diffusion coefficients 
at the two temperatures 

Dv = 2 .0x10  -22m ~sec - l a t 6 3 3 K  (17) 

D v = 5.3 x10-22m2sec - l a t 6 7 3 K  (18) 

These are average values since the procedure 
described gives slightly different self-diffusion 
coefficients for specimens with different thermo- 
mechanical treatments. These different coefficients 
result from the fact that Equation 5 is used in 
polycrystals with different average orientation 
factors. 

On taking into account that Dv = Do exp (-- Hv/ 
kT) where Hv is the activation enthalpy for self- 
diffusion, Equations 17 and 18 give 

H~ -~ 87 kJ mo1-1 (19) 

Do ~ 3.3 x10-15m2sec -1 (20) 

These values seem to be confirmed by recent 

measurements of the self-diffusion coefficient 
using ion-beam-sputtering techniques [25]. 
Furthermore, recent creep data at 673 K, in cold- 
worked and stress-relieved Zircaloy-4 lead to a 
self-diffusion coefficient similar to the value given 
by Equation 18 [16]. It must be pointed out that 
Do can be affected by a large error since, for 
example, on increasing Hv by 20% Do changes to 
values of the order of 10 -13 . 

The parameters for the master curves of Fig. 8 
coincide with those of the individual curves for 
~1, shown in Figs. 6 and 7. Once the parameters 
for one of the individual curves are known, those 
for the rest of the individual curves can be 
obtained by using, for a given type of specimen 
and at a given temperature, the translation con- 
ditions given by Equations 12 to 14. In fact, once 
a, ~* and/3 are known for one of the individual 
curves, since the increments Alog#, needed to 
translate the individual curves, can be easily deter- 
mined, Equations 12 to 14 can be used to calculate 
Aloge, Alog~* and Alog~3 and, consequently, to 
obtain the parameters for the rest of the individual 
curves from those of the reference curves. The 
detailed procedure is given elsewhere [23] but it 
should be pointed out that the curves of Figs. 6 
and 7 can be fitted either with Equation 11 or 
with Equation 5 with a maximum error of the 
order of 2%. 

The average distance between neighbouring 
jogs and the ratio of cell diameter to dislocation 
spacing can be obtained from a, ~* and/3 using 
Equations 6 to 10 and cj given by [26]: 
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Figure 9 Normalized plot of Equation 5. 
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Figure 10 Ratio o f  cell diameter  to dis- 
location spacing as a func t ion  o f  the  initial 
m a x i m u m  outer  fibre stress, for the differ- 
ent  specimens and  the  two temperatures .  

c i = e x p ( - x G b 3 / k r )  (21) 

0 . 2 > x  >~ 1/87r 

On taking x =  1/87r this equation leads to 
c i = 2 . 3 5 x 1 0  -2 at 673K, c i = l . 5 9 x 1 0  -2 at 
633K. The ratio of cell diameter to dislocation 
spacing, K, is shown in Fig. 10 as a function of 
the initial maximum outer fibre stress, for the 
different specimens and at the two temperatures. 
The average distance between neighbouring jogs, 
l, in units of the Burgers vector is shown in Fig. 11 
as a function of the reciprocal of the initial maxi- 
mum outer fibre stress, for the different specimens 
and at the two temperature. It is seen that I 
changes linearly with 1/2;. 

According to Fig. 10, K remains practically 
constant for all the specimens at 633 K. At 673 K, 
K is practically independent of Z for the cold- 
worked specimens and decreases with the initial 
stress for annealed and stress-relieved specimens. 
This behaviour is similar to that found for speci- 
mens with different degrees of cold-work, reported 
by Povolo and Peszkin [14] for the stress relax- 
ation in bending of Zircaloy-4 at 673 K. In fact, 
it was found that K did not change with 2; as 
cold-work increased and the strongest variation 
was obtained for annealed specimens. The depen- 
dence of K with 2; reflects the fact that the initial 
stress changes the dislocation structure and, as 
expected, the influence is stronger as the tem- 
perature increases but diminishes as cold-work 
increases. 

The values of K shown in Fig. 10 are of the 
order of magnitude of those obtained by obser- 
vations of the microstructure in several metals and 
alloys [27] and lie in the range predicted theoreti- 

cally by Gittus [28], i.e. 20 > K > 5. The exper- 
imental values for specimens B', C' and D' are 
slightly high but it should be pointed out that the 
measurements have been performed in polycrystals 
and Equation 5 is strictly valid for single crystals. 
In addition, several assumptions were made by 
Gittus during his theoretical calculations for K. 

It is interesting to discuss the significance of the 
slope of the translation path. In fact, as shown in 
Table IV, /1 depends on the thermomechanical 
treatment and on temperature. Povolo and Peszkin 
also observed that the slope of the translation path 
depended strongly on the thermomechanical 
treatment. Combining Equations 12 to 14 leads to 

~* = Ca (v2u-3) (22) 

where C is a constant at a given temperature and 
for a given thermomechanical treatment. Taking 
into account the definition of ~* and a,  as given 
by Equations 7 and 8, and Equation 9 give 

K 6 = (CG2/CiDv)b(YU-4)(kT)(a-a/2~)Ia/2u 

(23) 
If, as assumed by Gittus, l is related to c i by 

l = b /c j  (24) 

then, Equation 23 can be written as 

K = (CG2/Dv)I/6b(a/2#-4)(kT) (I-1/~#) 

x ci -- (1/6 + 1/12/a) (25) 

since the stress relaxation curves are related by 
scaling and K and l are not independent, as shown 
by Equation 23. Furthermore, if c i is related to l 
through Equation 24 then, as shown by Equation 
25, log K changes linearly with log c i and both the 
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slope and the intercept depend on la. Gittus [28] 
has deduced a theoretical relationship between K 
and q ,  showing that log K is linearly related to 
log q.  The approximate solutions of the theoreti- 
cal equation are 

K ~-. (0 .03c ' ) -m2crj  1/3 (26) 
and 

K ~ 1.58c~ ~ (27) 

valid for finite values of c' and K > 5 and, for 
c ' =  0 and K >t 1, respectively, c' is defined by 
c 'K ~ = (G - Gr)/Gr where Gr is the shear relaxed 
modulus. The approximate Equations 26 and 27 
show that the slope of the plot of log K against 
log cj is negative. 

From Equation 25 and the values for ta reported 
in Table IV it can be seen that the experimental 
slopes change between approximately --0.1 and 
- 0 . 2 5 ,  depending on the thermomechanical 
treatment and temperature. Furthermore, the 
intercepts also depend on temperature and on the 
previous history of the material. 

Equations 26 and 27 were obtained by Gittus 
by taking a limiting form of Equation 5 and by 
making several additional assumptions and they 
should be considered only as approximate. In fact, 
as shown by Equation 23, K depends on I through 
a power law, and on using Equation 24 it is 
implicitly assumed that only thermal jogs are 
present. This is not strictly valid since, as shown 
by Fig. 11, l depends also on ~;. A detailed dis- 
cussion on the theoretical value of K is given 
elsewhere [29]. Finally, it should be pointed out 
that creep data, at 673K, for cold-worked and 
stress-relieved Zircaloy-4 could be interpreted by 
using the same model. Values of K in the range 
20 to 5 were obtained and stress-relieved speci- 

mens showed higher values of K as compared with 
the cold-worked ones. 

5. Conclusions 
The stress relaxation in bending, at 633 and 673 K, 
of cold-worked, stress-relieved and annealed 
Zircaloy-4 can be very well described by a creep 
model that involves jog-drag and cell-formation. 
The ratio of cell-diameter to dislocation spacing, 
obtained from the stress relaxation curves, was 
shown to be dependent on the thermomechanical 
treatment given to the specimens, prior to the 
stress relaxation tests. 

Finally, the activation enthalpy and the pre- 
exponential factor for the self-diffusion of zircon- 
ium could be obtained from the stress relaxation 
curves measured at the two temperatures. 
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